
Supplemental Material for
SpinCam: High-Speed Imaging via a Rotating Point-Spread Function

Dorian Chan, Mark Sheinin, and Matthew O’Toole
Carnegie Mellon University, Pittsburgh, PA 15213, USA

dychan@andrew.cmu.edu, marksheinin@gmail.com, mpotoole@cmu.edu

1. Introduction
We refer the reader to “index.html” for viewing the sup-

plemental website, which includes videos of both results
from the main paper as well as additional results, and con-
tains the parameters for each experiment. We also include
a DIY guide as part of the website. We additionally share
our reconstruction code in “code/recover.ipynb”. In Sec. 2,
we start by exploring some of the key differences between
coded exposure and our approach. In Sec. 3, we dive into an
analysis of the space of potential PSFs for a rotating setup
from the point-of-view of mutual coherence. In the rest of
this document, we discuss the details of our real setup in
more depth. In Sec. 4, we verify the reconstruction resolu-
tion of our system. In Sec. 5, we provide more information
on our calibration and capture process. We use the color
blue to refer figures and equations from the main paper.

2. Relationship to Coded Exposure
As we noted in the main paper, the convolution between

the PSF and the scene at time t can be expressed in the
Fourier domain as the elementwise multiplication of their
corresponding Fourier transforms. The final computed im-
age is the integration of all of these multiplications. In
other words, a coded exposure process is performed on the
Fourier transform of the image of the scene. Why might
our approach then be useful when compared to traditional
coded exposure?

To attempt to answer this question, we consider the sim-
ple case of a single bump binary shutter, a restriction often
utilized in previous work for ease of practical implementa-
tion [5]. Under this scenario, at each time instant, a subset
of the pixels of the scene will be captured under coded ex-
posure, while a subset of the frequencies will be captured
under our approach. As a result, scenes that are redundant in
frequency are better captured by a time-varying PSF, while
scenes that are redundant in space are better captured by a
coded exposure. For example, a coded exposure setup may
have a hard time resolving a spatially sparse scene consist-
ing of a single point, while a time-varying PSF would easily
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Figure 1. Simulated comparison with coded exposure. For
coded exposure, we implemented the shutter function of Hitomi et
al. [5] with the same simple sparsity and variation priors as in
Eq. (4). (a) A flickering point source. (b) The resulting coded-
exposure image fails to capture the flicker dynamics due to the
scene’s spatial sparsity—all of temporal signal is captured in a
single measurement. (c) The rotating PSF captures the flicker dy-
namics, as seen in the circle around the central points. (d-f) In
dense scenes, coded exposure can outperform our method, espe-
cially under noise.

resolve it—we illustrate this phenomenon in Fig. 1 in the
case of a single flashing point. Conversely, a time-varying
PSF would struggle to capture a scene consisting of a single
spatial frequency, while a coded exposure approach would
have no such problems. We note that many applications
of high-speed imaging fall into the spatially sparse regime,
which we demonstrate in the main paper and is argued by
past work [14, 13].

In general, generic scenes fall into neither category. Cur-
rently, as shown in the second row of Fig. 1, our method
performs somewhat worse than coded exposure techniques
on natural dense scenes. However, by leveraging strong pri-
ors like dictionary learning or machine learning like those
applied in the coded exposure literature [9, 6, 10], it is likely
the results of using a time-varying PSF can be significantly
improved.

In addition, we note that in our current prototype system,
the grating PSF codes the frequency spectrum with a gen-
eral broadband pattern with few zeros (see Fig. 5). This
allows our system to resolve more frequencies for every
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Figure 2. Quantitative spatiotemporal resolution example. The
word “test” moves in a sinusoidal pattern. (a) A PSF that does not
significantly vary with rotation results in poor temporal resolution
& motion blur. (b) A PSF with more rotational variation offers
better temporal resolution, but can result in spatial blur if not well
designed. (c) A good PSF balances these two concerns.

time step, at the cost of having to solve a complex unmixing
problem (Eq. (4)). In contrast, existing implementations of
coded exposure techniques have been limited to binary pat-
terns for ease of implementation [5, 9]. This extra degree
of freedom provided by a PSF setup could be adapted to
different target scenes. For example, for an extremely spa-
tially sparse scene, a narrowband PSF with a sparse binary
spectrum could be used to maximize temporal resolution,
while a broadband PSF could be used for denser scenes to
maximize spatial resolution.

As we mentioned in the main paper, traditional ap-
proaches for coded exposure are also limited in their tempo-
ral resolution and suffer from complex hardware. State-of-
the-art approaches based on experimental sensors [7, 8, 9,
6, 11] or SLMs [5, 12] are limited by how quickly masks
can be displayed by the corresponding hardware. SLM
and piezoelectric stage-based approaches also require care-
ful alignment and positioning in order to colocate the device
with the sensor. In contrast, a rotating PSF setup can be eas-
ily implemented as shown by our DIY guide, just by placing
a diffraction grating in front of the lens of a camera. Fur-
thermore, our prototype can operate at 192,000 FPS on our
off-the-shelf motor, and this rate can be increased just by
speeding up the motor.

3. What is the Right PSF to Use?
In the main paper, we briefly touched on the spatiotem-

poral resolution provided by a few examples of different
PSFs, and we show a quantitative example in Fig. 2. How-
ever, this begs the following important question—in gen-
eral, what is the right PSF to use, such that the original high
speed signal can be easily and efficiently recovered?

To explore this question, we turn to the compressed sens-
ing literature. It is well known that the quantity known
as the mutual coherence of a compressed sensing sys-
tem [3, 4, 1], like that expressed in Eq. (4), limits the density
of scenes that can be recovered. When the mutual coherence

is high, only very sparse scenes can be recovered. When the
mutual coherence is low, then much denser scenes can be re-
constructed. Mathematically, assuming that the high speed
video is spatiotemporally sparse, the mutual coherence µ of
our system can be expressed as follows:

µ(M) = max
i̸=j,1≤i,j≤n

|mT
i mj |

∥mi∥∥mj∥
(1)

where M denotes the forward model of our rotating PSF in
matrix form, n is the number of columns in M, and mi is
the ith column of M. This can also be written in matrix
form:

µ(M) = max
i̸=j,1≤i,j≤n

|(M̃TM̃)i,j | (2)

where M̃ is the column-normalized form of M. In prac-
tice, µ merely constrains the worst case recovery of a com-
pressed sensing system, and often does not reflect the real
performance of a compressed sensing system [4]. As a re-
sult, the computation above is often relaxed in order to bet-
ter reflect average performance [4, 1]—one particular form
is given by:

µavg(M) =

∑
i̸=j |(M̃TM̃)i,j |
n(n− 1)

(3)

where an “average” mutual coherence is computed [4].
In the case of our imaging system, these expressions

can be intuitively interpreted as measuring how unique the
responses of different spatiotemporal points are. If each
spatiotemporal scene point leaves very different responses
compared to other points, the points will be easier to disam-
biguate and the mutual coherence is small. However, if they
leave very similar responses, different points will be hard to
separate and the mutual coherence is large.

For our imaging system, it turns out that under special
conditions, these equations can be efficiently computed. In
particular, note that M̃TM̃ can be rewritten as:

M̃TM̃ =


C̃1

T

C̃2
T

· · ·
˜CNE

T

 [
C̃1 C̃2 · · · C̃NE

]
(4)

where C̃i is the normalized version of Ci, which denoted the
convolution with the PSF at timestep i in Eq. (3). There-
fore, row i of M̃TM̃ can be efficiently computed by taking
the response of spatiotemporal pixel i, and cross-correlating
that function with the PSF at every timestep. Furthermore,
if we ignore boundary conditions and assume that the re-
sponses of all pixels at some timestep t are identical, this
computation can be reused for all pixels from time t, and
the entries of M̃TM̃ can be approximately computed with
just N2

E convolutions. Instead of computing these metrics
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Computed coherence values
µ 0.9950 0.9140 0.9537 0.8763

µavg 0.0023 0.0370 0.0007 0.0001

µspatial 0.9950 0.8211 0.6605 0.5237

µavg, spatial 0.0023 0.0370 0.0006 0.0001

µtemporal 0.8302 0.9140 0.9537 0.8763

µavg, temporal 0.0481 0.2340 0.1527 0.0242

(a) Line (b) Diffuser [2] (c) Grating (d) Optimized

Figure 3. Evaluating real potential PSFs with mutual coherence measures. (a) A line PSF, like that generated by a cylindrical lens,
has poor spatial mutual coherence values, resulting in shoddy reconstructions. (b) The PSF from a diffuser [2] has better spatial mutual
coherence but poor average-case coherence, once again resulting in poor results. (c) The PSF created by a dual-axis diffraction grating
has slightly worse temporal mutual coherence, but better average case coherence in both the spatial and temporal cases, resulting in better
reconstructions. (d) A PSF generated by an optimization procedure [1] results in the best coherence scores and the best reconstructions,
but creating such a PSF is not easily physically realizable.

over all the spatiotemporal points, we can also restrict the
computations to just points from the same timestamps but
different spatial locations to get a sense of the spatial res-
olution, which we denote as µspatial and µavg, spatial. We can
apply the same procedure for points from the same spatial
location but different timestamps to get a sense of the tem-
poral resolution, which we term µtemporal and µavg, temporal.

With these expressions in hand, we can apply them to
possible PSFs we could use for our real world prototype.
We show sample reconstructions along with the estimated
numbers in Fig. 3, which we compute with a PSF resolution
of 150 × 200 pixels and 150 timesteps over a 90◦ rotation.
A line PSF like that generated by a cylindrical lens, as ex-
pected, has very poor mutual coherence, resulting in poor
reconstructions with poor SNR. It has strong temporal reso-
lution, as shown by the temporal coherence values, but poor
spatial resolution as shown by the high spatial coherence
numbers. A diffuser PSF, like the one used by Antipa et
al. [2], has better mutual coherence, but poor average mu-
tual coherence, again resulting in poor reconstructions. A
grating PSF has slightly worse mutual coherence but much
better average mutual coherence, resulting in higher qual-
ity reconstructions. While its temporal coherence does not
match that of the line PSF, the reconstructions are visually
improved thanks to the better spatial resolution. We note
that when computing the coherence values for the grating,
we clipped the brightness of the central DC spot to the max-
imum brightness of the color streaks, to better match real
world usage where the central DC spot is allowed to be
overexposed to better expose the rest of the PSF. Finally, we
can also optimize for a PSF with a low mutual coherence—
we follow the approach of Abolghasemi et al. [1] and min-
imize the related expression |I − M̃TM̃|F using gradient
descent. This optimized PSF, though not easily physically
realizable, provides both the best coherence scores as well
as the best reconstructions.

To end this section, we emphasize that the above find-

ings are heavily dependent on the priors utilized for the re-
construction process. The above derivations focused on the
specific case of spatiotemporal sparsity, and the PSF that
minimizes the mutual coherence may look very different if
another prior is used. For example, if the scene is sparse
under some other basis B, the mutual coherence would be
instead computed using the matrix G = MB. Furthermore,
while µ possesses strong theoretical guarantees on the spar-
sity of scenes that can be recovered, the average case µavg
lacks the same mathematical rigor, and our approximations
for computing M̃TM̃ introduce further uncertainty. Appro-
priately, the results in this section should then be used as a
general guideline for the right PSF rather than a definitive
rulebook.

4. Reconstruction Resolution

In our results, we reconstructed 146 frames from each
300 × 400 pixel image. We verified that our system can
adequately resolve such temporal resolution in Fig. 4 in the
presence of shot and read noise. It is likely that with more
GPU memory, larger images can be input into our recon-
struction method and even higher temporal resolution can
be resolved.

5. Calibration and Capture

In order to apply Eq. (4), we need to identify the time-
varying point-spread function of our system. To simplify
this process, we assume that the PSF varies purely as a func-
tion of rotation, and there is no distortion or otherwise non-
ideal effects that might be caused in deformations or mis-
alignment in the grating. Secondly, we assume that the PSF
rotates at a constant rate over the camera exposure.

With these two simple assumptions, for a particular cap-
ture, we then just need to know the stationary PSF k of our
system, and the range of angles that are rotated over during
the camera exposure. We examine each element in more
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Figure 4. Reconstructing a simulated 150 frame video encoded in
a 90◦ rotation of the point-spread function in a 300 × 400 pixel
image. Our setup is able to resolve a point source flashing every
other frame. Here, we set λsparsity = 1e − 7, λdx = λdy = 0, and
λdt = 0.

detail in the rest of this section, as well as potential future
hardware implementations.

5.1. Calibrating the stationary PSF

To calibrate k, we place a small sample of the target ma-
terial in front of a black background in the field-of-view of
the optical system, and capture an image with the grating at
a single fixed orientation. This image can be used directly
for the PSF, but a sharper PSF can potentially be created in
postprocessing. In short, we create a DC-only version of
this image by cropping out the rainbow streaks created by
the diffraction grating, and then perform a sparse deconvo-
lution between the DC-only image and the original captured
image to recover a sharp PSF:

argmin
x

∥Icapture − Idc ∗ k∥2 + IR+(k) + λsparsity∥k∥1
(5)

where IR+ denotes a non-negativity prior, and λsparsity

weights a sparsity regularization term. Instead of using a
DC-only image, one could also capture an image of the
scene with and without the grating present — however, we
found this process was difficult without significantly dis-
turbing the optical setup.

Once we have computed a sharp PSF, we can then syn-
thetically rotate this PSF to create the kernel at any desired
angle. While we could capture separate images for a large
set of rotations of the grating, we empirically find that such

Estimated: 324◦

Real: 321.40◦

C
om

pu
te

d
sc

or
e

0◦ 180◦ 360◦

0.25

0.50

0.75

(a) Simulated measurements (b) Estimated θstart

Figure 5. Validating our coarse approach for determining the start
angle θstart on a simulated scene. In short, we solve a coarse ver-
sion of Eq. (4) using a dictionary that spans all possible rotations.
We use this coarse reconstruction to estimate a score for every
possible start angle, based on the energy contained in the subse-
quent 90◦ of reconstructed frames. Note the bimodal nature of the
graph - the utilized grating PSF is roughly 180◦ symmetric. Here,
λsparsity = λdx = λdy = λdt = 5× 10−4.

a methodology produces similar results to the synthetic ro-
tation while requiring significantly more calibration effort
and computation time.

5.2. Identifying the dictionary of angles

Determining what range of angles the PSF spans in a
particular exposure is a more complicated problem. As-
suming that the PSF spins at a uniform rate, this requires
determining the start angle θstart and end angle θend. We
rely on an unstructured approach that simply requires that
the scene contains content at the beginning and at the end
of the camera exposure. First, we preconfigure the speed
of the spinning disk and the camera exposure, such that the
disk rotates some θspeed = θend − θstart in every captured im-
age. To do this, for our diffraction grating, we fix the motor
voltage, and then tune the exposure time of the camera such
that θspeed = 90◦ — we compute θspeed by correlating a im-
age of a small retroreflector with different rotations of the
previously calibrated k.

Then, with θspeed, we solve a coarse version of Eq. (4),
using a dictionary of NE PSFs k spanning angles between 0
and 360 degrees in order. We typically use around 2000 it-
erations. We take the maximum value of each of the output
frames, and then compute a score for each angle consisting
of the mean of the maximum value of the next θspeed recon-
structions. We then set θstart to the largest score. Intuitively,
in the reconstructed video, the correct angles will be the
brightest frames, while the incorrect angles will be darker.
We demonstrate the validity of this approach on simulated
measurements in Fig. 5. Note that the plot is bimodal — the
PSF of our diffraction grating is roughly 180◦ symmetric.

Once we have estimated θstart and θend, we again solve
Eq. (4) with a new dictionary consisting of equally spaced
angles θstart between θend. Because the motor may change
speed over time, we then use a manual tuning step to refine
θstart and θend. For example, if there are dark frames at the



beginning and end of the sequence, we increase θstart and
decrease θend. However, if there is significant reconstructed
brightness in the first and last frames, we decrease θstart and
increase θend.

5.3. Future hardware

In general, this above process is easy to implement, but
lacks the rigor required for extremely accurate timing. In
practice, there are a number of potential hardware solutions
that could be utilized to improve the above system. For in-
stance, a higher quality motor that rotates at a consistent,
known rate would remove the need for the previously de-
scribed manual tuning step.

Alternatively, one could simply place a calibration LED
into the field of view of the camera. If the PSF and the lo-
cation of the LED can be calibrated, then by examining the
response present in the captured image the exact range of
angles can be extracted. However, this LED leaves residual
signal in the frame that needs to be removed or accounted
for, which can potentially corrupt the reconstructions of the
actual target scene.

Another potential option is to use a triggering system
separate from the camera to directly capture the requisite
start and end angles of the exposure. Under one potential
implementation, a small dot could be painted onto the disk
at a known angle θdot such that when it passes over a pho-
todiode, the system can determine that the disk is at θdot.
By tracking the amount of time required for subsequent ac-
tivations of the photodiode, the speed of the disk can be
identified on the fly. If the camera is triggered off these
activations, then the start and end angles can also then be
directly found if the trigger delay is calibrated.

Finally, a fast servo motor that allows careful control of
the rotation speed and positioning would remedy all of the
above problems, if properly synchronized with the camera.
However, such a system would not allow for continuous,
repeated capture, for long videos.
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