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1. Additional prototype details
1.1. Hardware components

The rolling- and global-shutter cameras are IDS UI3240-
NIR-GL and UI3070CP-M-GL, respectively. The relay op-
tics consists of a beam splitter (Thorlabs CCM1-BS013)
and a 75mm matched doublet pair (Thorlabs MAP1075150-
A). The objective and cylindrical lenses are Edmund op-
tics 16mm/f1.8 and Thorlabs 50mm LJ4709RM-A, respec-
tively. The cylindrical lens is placed approximately 25mm
from the objective lens. The green laser is a 532nm 4.5mW
(Thorlabs CPS532) laser. The diffraction gratings we used
to spread the laser into multiple dots are Edmund optics 80
and 92 grooves/mm.

1.2. Creating multiple laser points

In Figs. 1,7,9,10 of the main paper, we captured multiple
laser points simultaneously. Here, we provide more details
on how we generated these multiple points. Fig 1(a) shows
a schematic of the optics used to generate multiple scene
points. The laser beam passes through a diffraction grating,
splitting the beam into multiple beams exiting at different
angles. The number of beams depends on the diffraction
grating type. The outgoing beams are relayed towards the
scene through a beam-splitter (Thorlabs PBSW-532R) to il-
luminate the object (or objects) points of interest. The dual-
shutter camera views the scene through the beam splitter in
a coaxial configuration to maximize the signal intensity.1

The multiple outgoing laser beams illuminate several
points of interest on the object surface. In a focused system
without the cylindrical lens, the illuminated points project
to a set of corresponding image-plane points via standard
projective geometry (Fig 1(b)). Defocusing the objective
lens spreads each image point into a circle in which the
speckle pattern is visible (Fig 1(c)). Finally, the cylindrical
lens vertically spreads each circle into a (speckle) column
(Fig 1(d)).

In Fig 1(a), the laser beams exiting to the right of the
beam splitter (exit 2) are blocked. However, these beams

1The coaxial configuration is mostly useful when using retro-reflective
markers. Without any markers, the laser can illuminate the surface directly
without the beam-splitter.

can used instead of the forward facing beams (exit 1) shown
in the schematic. For example, in the two-guitar experiment
shown in Fig. 9(bottom) of the main paper, only beam 2 was
unblocked at exit 1 of the beam splitter, while only beam
4 was unblocked at exit 2. Note that each split beam can
only be used at one of the beam splitter exits, and must be
blocked on the other.

2. Coarse-to-fine 2D speckle shift recovery
Eqs. (11)-(13) of the main paper describe a method for

computing the per-row shifts δûnk(y). This method can be
applied as is for small to moderate dictionaries V . However,
as the number of possible shifts M increases, computing the
similarity measure for all possible shifts becomes a com-
putationally expensive operation. Therefore, we provide a
two-step coarse-to-fine approach for recovering δûnk(y).
We experimentally tested the proposed approach and found
it gives sufficiently identical results to the direct approach
described by Eqs. (11)-(13), for a fraction of the run time.

The solution is split into two levels: coarse and fine. De-
fine

δûnk(y) ≡ δûc(y) + δûf(y), (1)

where δûc(y) and δûf(y) are the coarse and fine com-
ponents, respectively. Here we dropped the nk sub-
script for brevity. In the coarse level, the shifts
δûc(y) =

(
δûc

dx(y), δû
c
dy(y)

)
are recovered up to a single

pixel resolution, while the fine level refines the solution for
a sub-pixel resolution.
Coarse level: In the coarse level, the shifts are recovered
sequentially: first we recover the y-axis shifts, followed by
the x-axis shifts. We normalize the rows of ĪRS and ĪGS

yielding ĪnormRS and ĪnormGS , respectively. This row-wise nor-
malization consists of subtracting the mean of each row and
dividing each row by the row’s standard deviation. Then
we apply a row-wise Fast Fourier Transform on the rows of
ĪnormRS and ĪnormGS , yielding ĪFRS and ĪFGS respectively.2

Let Y={yl}L−1
l=0 denote a set of L possible y-axis shifts

having some maximum span, and a step size of one pixel,

2Both ĪFRS and ĪFGS are shifted using the fftshift() function such that
the zero-frequency component is at the center of the array.
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Figure 1. Generating multiple laser points. (a) We generate multi-
ple laser points by passing the laser through a diffraction grating.
(b) Without the cylindrical lens, focusing the objective lens at the
object surface creates a ”standard” image of the laser points. (c)
Defocusing the objective lens, turns each laser points into a circle
in which the speckle pattern is visible. (d) Adding the cylindri-
cal lens in front of the objective lens spreads each circle into a
(speckle) column.

e.g. Y = {−40,−39, .., 40}. Next we compute the correla-
tion for the normalized rows in the Fourier domain [6] for
each shift in Y:

Oy(x, yl) =
1

R

∣∣∣F−1
(
ĪFRS(x, t

rs
n )⊙ ĪFGS(x+ (0, yl), t

gs
k )conj

)∣∣∣ ,
(2)

where F−1(·) is the inverse FFT operator, R is the width of
the speckle column in pixels, and the superscript conj de-
notes a complex conjugate. Notice that for every vertical
shift yl, Eq. (2) yields a vector of normalized correlations
for R horizontal shifts in the range {−R/2, .., R/2}. There-
fore, function Oy(x, yl) simultaneously provides informa-
tion on both x- and y-axis correlations between the rolling-
and global-shutter frames. Specifically, we expect that for
the correct vertical shift yl, the peak correlation value across
all x-axis shifts in Oy(x, yl) will be the highest with respect
to other yl. Moreover, once the correct vertical shift yl is
found, the location of the highest correlation peak directly
corresponds to the recovered x-axis shift.

Therefore, we first compute the optimal vertical y-axis
shift. Let

Sdy
y (yl) = max

x
Oy(x, yl) (3)

denote the y-axis similarity measure. Define
Udy = {δûc

dy(y)}∀y as the set of y-axis shifts for all
rows, where δûc

dy(y) ∈ Y .
We recover the y-axis shift by minimizing the following

loss function:

E(Udy) =
∑
y

[
1− Sdy

y (δuc
dy(y))

]
+λ

∑
y,y′

Vy,y′ (δuc
dy(y), δu

c
dy(y

′)),

(4)
where the solution is given by

Ûdy = argmin
Udy

(
E(Udy)

)
, (5)

and all other terms in Eq. (4) are analogous to the same
terms in Eq. (11) in the main paper. Next we compute the
x-axis shifts using the recovered y-axis shifts.

Let Udx = {δûc
dx(y)}∀y denote the set of all x-shifts,

where δûdx(y) ∈ X , and X = {xr}R−1
r=0 . The similarity

measure for the x-axis shifts is given by

Sdx
y (xr) = Oy

(
xr, δû

c
dy(y)

)
. (6)

Then we recover Ûdx by minimizing the loss function:

E(Udx) =
∑
y

[
1− Sdx

y (δûc
dx(y))

]
+λ

∑
y,y′

Vy,y′ (δûc
dx(y), δû

c
dx(y

′)),

(7)
using

Ûdx = argmin
Udx

(
E(Udx)

)
. (8)

Fine level: After recovering the coarse level shifts,
the fine level shifts δûf(y) are recovered using the
standard procedure described in the main paper ex-
cept for slight modifications. The set of fine level
shifts V is now set to a sub-pixel resolution (e.g.
V = {(−0.5,−0.5), (−0.5,−0.4), .., (0.5, 0.5)}. Recovery
is done using Eqs. (11), (13) of the main paper, along with



an augmented Eqs. (12) that accounts for the coarse level
shifts:

Sy(vm) = ZNCC
(
ĪRS(x, t

rs
n ), ĪGS(x+ δûc(y) + vm, tgsk )

)
.

(9)
The recovered shifts δûf(y) are added to the coarse level
shifts using Eq. (1) to yield the final result.

3. Reference frame selection

As shown in Fig. 5 of the main paper, high-amplitude
motions may cause a single reference frame to be insuffi-
cient for recovering all row shifts in frame n. Therefore,
using multiple frames improves signal recovery by increas-
ing the chance that all rolling-shutter rows in frame n will
have a corresponding overlap in one of the reference frames.
A simple solution would be to use all reference frames for
recovering each rolling-shutter frame; however, this would
yield much longer run times. Instead, we limit recovery to a
set of P reference frames, which must be selected for each
frame n, as explained below.

We use two strategies of reference frame selection which
depend on the object’s macro-motion. In non-static objects,
such as hand-held musical instruments, the low-frequency
motion amplitude may be substantial, spanning thousands
of pixels in both axes. Therefore, it is highly likely that
only temporally adjacent global-shutter frames will contain
any overlap with any given rolling-shutter frame n. Conse-
quently, in scenes with large motions, we set Rn to the P
frames whose timestamp tgsk is closest to trsn .

In scenes where the object’s low-frequency motion am-
plitude is low (e.g. chips bag, tuning fork, or speaker mem-
brane), the global speckle pattern drift across time is rel-
atively small, spanning just a few dozen pixels. There-
fore, for each rolling-shutter frame n, the set of ’relevant’
reference frames which may have significant overlap with
frame n is larger than in the non-static case. Two refer-
ence frames k1 and k2 whose global shift is nearly identi-
cal u(tgsk1

) ≈ u(tgsk2
) will likely have similar overlaps with

frame n, and thus will contribute redundant information. In-
stead, we wish to select P frames that provide the largest
cover of the 2D speckle pattern.

Let R̃n={k0, k1, .., kQ−1} denote a set of Q temporally
closet reference frames to frame n, where Q > P . Without
loss of generality, suppose that indices in R̃n are ordered
by the proximity of the frame’s timestamp to trsn , namely
that k0 belongs to the reference frame whose timestamp tgsk0

is closest to trsn . We select the P reference frames from
R̃n as described in Algorithm 1. The main idea here is to
iteratively select reference frames whose global shift is the
farthest away from all the shifts in the selected reference
frames so far. We used P = 15 for all scenes and Q = 30
for static scenes.

Algorithm 1 Selecting P reference frames from R̃n

1: InitializeRn ←− ∅.
2: Initialize R̃n ←− {k0, k1, .., kQ−1}.
3: Add closest frame index toRn ←− Rn ∪ k0
4: Subtract closest frame index from R̃n ←− R̃n \ k0
5: while ||Rn|| < P do
6: Find index kj ∈R̃n that is farthest from the setRn,

kj = argmax
kj∈R̃n

min
ki∈Rn

(
|u(tgski

)− u(tgskj
)|
)

7: Add kj toRn ←− Rn ∪ kj
8: Subtract kj from R̃n ←− Rn \ kj
9: end while

4. Global-shutter to rolling-shutter mapping
In section 4 of the main paper, we outline the calibra-

tion process of computing a mapping function between the
global and rolling shutter image domains. In this section,
we provide a more detailed description of this process.

The calibration process consists of three main stages:
(a) We capture and store a pair of frames of a static object.
Then, we extract feature points in both frames using a SIFT
descriptor [5]. Using the extracted feature points, we esti-
mate an initial ’rough’ homography transform between the
full sensor frames. Let I0RS and I0GS denote the stored cali-
bration frames. The initial homography mapping is insuffi-
ciently accurate since it can not encapsulate non-projective
lens distortions. However, it will be used to automatically
find and crop roughly the same image domain in the global-
shutter frames.

During vibration sensing, we point the system at the
object or objects of interest and record the simultaneous
videos. We crop the rolling-shutter video IRS on the speckle
column of the point we wish to recover, yielding ĪRS.
(b) We then apply the same crop on I0RS yielding Ī0RS. The
initial homography is then used to automatically find and
crop the same image domain in the global-shutter frames
for the calibration frame and the captured vibration video,
yielding Ī0GS and ĪGS, respectively.
(c) Next, we compute a more accurate mapping by repeating
the feature extraction process on the cropped Ī0RS and Ī0GS,
and using the extracted points to fit a 3rd-degree smooth bi-
variate spline interpolation between the frames. Finally, we
apply the resulting mapping to IGS to yield the desired ĪGS.

Stage (a) is only done once, while stages (b) and (c) are
repeated before the recovery of every unique speckle col-
umn to yield the most accurate local mapping. 3 This cali-
bration process takes a few seconds to complete.

Imperfections in the resulting mapping may still yield
a small sub-pixel bias to the x- and y-shifts, respectively.

3A unique speckle column is a speckle column whose column range in
IRS has not been calibrated yet.
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Figure 2. Chips bag experiment without markers. We image the chips bag of Fig. 8(a) of the main paper without any retro-reflective markers.
The speaker is playing a series of tones which are simultaneously recorded using our system and a microphone. The spectrograms of the
input signal, microphone recording, and recovered audio are shown.

We remove these biases by averaging the signal of a few
static frames (where the object is static), and subtracting the
computed x- and y- axis biases, per frame, from all future
measurements.

5. Post processing for audio replay
We post-process the recovered speckle shifts intended

for an audio replay. First, we apply a high-pass filter to
get rid of the object’s low-frequency macro motions. Then,
similar to Davis et al. [3], we interpolate the rolling-shutter
dead-time between subsequent frames using either an ad-
hoc method based on Fourier interpolation or a technique
based on fitting an autoregressive model [4]. Both ap-
proaches yielded nearly identical results aurally. We then
identify large spikes in the measurements using a simple
detection algorithm, where we threshold based on the dif-
ference between the original and a median-filtered signal.
We remove the detected spikes and interpolate new values
for those timestamps. Finally, we use audio editing soft-
ware to crop the audio and apply an additional denoising
step where we generate a noise profile using a short interval
of silence and subtract the resulting profile in FFT-domain
[2]. In the last denoising step, the noise profile is generated
once and applied to recoveries from the same experiment.

6. Additional experimental results
6.1. Chips bag without retro-reflective marker

Fig. 8(a) of the main paper shows an experiment where
our system captures and replays the indirect vibrations of
a chips bag reacting to audio from a nearby speaker. In
Fig. 8(a) the chips bag is attached with a small retro-
reflective marker to boost the light reflected from the low-
power laser used in our prototype. Fig. 2 shows an ex-
periment where we capture the bag’s vibration without any
markers.

To compensate for the low SNR, we increase the cam-
era’s exposure time to 2.5ms, corresponding to an effective
temporal sampling rate of 400Hz. We record the nearby
speaker playing a series of tones, and show the spectro-
grams for the input signal, microphone, and the signal re-
covered using our system. Note that our prototype utilized

a low-power laser (4.5mW). A higher power laser as in [1,7]
can enable capturing audio at higher frequencies, similar to
Fig. 8(a), without any markers.

6.2. Sensitivity study and macro-motion velocity

In Section 5.4 of the main paper, we describe a sensi-
tivity study in which we measure the relationship between
small tilts and transversal motions of the observed surface
to 2D speckle pattern shifts in the image plane. Fig. 3 shows
the resulting linear relationships. As stated in the main pa-
per, the measured sensitivity to tilts was 950 and 1475 pix-
els/degree for the x- and y-axis, respectively, while the sen-
sitively to the transversal motion was 43 and 61 pixels/mm
for x- and y-axis, respectively. The ∼ 1.5× factor differ-
ence in sensitivity between the axes stems from the higher
optical magnification resulting from the cylindrical lens.

The sensitivity figures above can be useful to assess the
maximum physical object velocities that the system can
handle.4 Object marco-motions lead to speckle pattern
shifts in the image plane. Our method assumes that the ref-
erence camera is fast enough (or that the object motion is
slow enough), such that there exists some minimum over-
lap between consecutive reference frames.

The maximum allowable velocity depends on many
factors (e.g. object distance, speckle column width, SNR,
optics). Assuming a 200px-wide column and 10% mini-
mum overlap between frames, the speckle can shift up to
180 pixels per frame. Since the camera operates at 134 FPS,
this means that the pattern can shift up to 180×134=24120
pixels per second. Dividing the 24120 pixels-per-second by
the x-axis sensitivity of 43 pixels/mm, yields a maximum
physical transversal velocity of 560mm/sec or about
0.6m/sec. Note that this velocity assessment holds for the
object distance at which the sensitivity was measured.

6.3. Correlation accuracy vs. pixels per row

In Section 6 of the main paper, we asserted that as the
speckle columns get narrower, the number of pixels per-
point per-row decreases, which can potentially decrease the

4The object’s motion in space can be handled as long as the laser hits
the object’s vibrating surface.



Figure 3. Sensitivity study. We point the system at a optomechan-
ical stage capable of precise tilts, shift and rotation, and record the
resulting 2D speckle image motion. The sensitivity to tilts was 950
and 1475 pixels/degree for x- and y-axis, respectively. Shift sensi-
tivity is 43 and 61 pixels/mm for x- and y-axis, respectively. The
camera was placed approximately 75mm away from the stage.

correlation accuracy (Eq. (12) of the main paper). In gen-
eral, besides the pixels per row, the correlation accuracy
also depends on several other factors such as the x-axis shift
amplitude, the SNR and more. In this experiment, we an-
alyze the correlation accuracy as a function of the speckle
column width while keeping the SNR constant and mini-
mizing the effect of x-axis shift amplitude by observing a
signal with mostly y-axis shifts.

Fig. 4 shows the mean squared error (MSE) for signal
recovery as a function of the speckle column width in pixels.
The error is computed with respect to the ”nominal” speckle
column width of 135 pixels. The plot shows no significant
increase in error up to around 35px-wide columns (red point
in Fig. 4). When decreasing the column width below 35 px,
the accuracy rapidly drops.

Figure 4. Correlation accuracy vs. pixels per row. Each laser point
creates a ‘speckle column’ in the image plane. Decreasing the
width of the speckle column in pixels (x-axis in the plot) per point
may decrease the correlation accuracy. The plot shows that de-
creasing the speckle column width has negligible effect up to a
width of 35 pixels, after which the reconstruction mean squared
error (MSE) begins to deteriorate.
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