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1 High-intensity Line Illumination System

In the main manuscript, we presented two 3D structured light systems that use
line illumination: (a) a projector-based system where a line (plane is space) is
swept over the scene, and (b) a static line scanner where objects are scanned
by moving through the illuminated area. Here we provide additional technical
details and results for the static line scanner experiment.

Fig. 10(a) of the main manuscript (reproduced here as Fig. 1[a]) shows our
experimental static line scanner. We placed the line light approximately 7.5cm
above a flat surface. The line light is an Advanced Illumination LL167 high
intensity white line light. The camera system images the objects under scan.
The camera was configured to readout three 8 × 2056 ROIs, and was set to
operate at 1743 FPS with an exposure of 300us. The helper camera was set to
the standard 60 FPS.

The system was calibrated by vertically moving a white planar object. For
each planar position, we simultaneously recorded the diffracted signal along with
the resulting projected line (using the helper camera). Ground truth disparity is
computed similarly to the projector line calibration detailed in Section 6 of the
main manuscript. Fig. 1(b) shows the measured signal from the three ROIs. The
image in Fig. 1(b) is vertically stretched for better visualization. Figs. 1(c)-(e)
show the raw recovered disparity from several objects superimposed on the helper
camera image. All measurements here were captured at a rate of 1743 FPS, in
regular lighting conditions (with room and sunlight ambient light present).

The supplementary video shows a scanning of fan rotating at 1300 RPM.
The fan is simultaneously imaged using our system and the 2D helper camera
for visualization. Here, the helper camera is not perfectly synchronized to the
diffraction camera. Therefore, the disparity measurements might not match pre-
cisely due to a possible delay. As seen in the video, the 2D camera is unable
to articulate the fan’s motion due to its low capturing rate. The fan appears to
rotate backwards due to aliasing in the sampling. On the other hand, our system
is able to accurately capture the fan’s motion.

As seen in Fig. 1e (middle apple), using a line illumination has a disadvantage
over a laser beam or a projector. The latter can be approximated as a point
source with respect to the scene and thus cause little to no vertical illumination
overlap. However, the line illumination also illuminates parts of the object that
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Fig. 1. Fast line-illumination scanning. The high intensity source enables very fast
scan speeds, up to 1743 scan lines per second. (a) The experimental prototype, com-
posed of a single diffraction system and a high intensity line illumination source. (b)
The measured signal of scene (a) from three 8 × 2056 ROIs. The ROI image is verti-
cally stretched for visualization. (c) The raw recovered disparity, superimposed on the
ground truth helper camera. Observe the good correspondence between the recovered
and ground truth disparity. (d)-(e) Additional scanning results.

would be shadowed when using a small point source, which may cause vertical
color overlays at object edges and degrade disparity recovery quality. This can
be mitigated by placing the objects on a black surface (instead of the white seen
here).

2 Merging Measurement From Multiple Sensors

We propose using additional line sensors to improve point positioning accuracy.
In this section, we describe how to merge the measurements captured by the
multiple line sensors, used in our horizontal cylindrical lens system (Section 2.1)
and the double-axis diffraction system (Section 2.2).

2.1 Horizontal Cylindrical Lens

Let x̃ denote the pixel coordinate of the cylindrical camera’s image plane. Ad-
ditionally, suppose that x̃ ≡ xv, namely that the virtual camera’s image plane
horizontal axis and the cylindrical camera’s image plane horizontal axis coincide.
Denote the line image at coordinate x̃ by the pixel value Igray(x̃). Here we as-
sume a monochrome line image since no color information is required. Assuming
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no two scene points share the same xv, detecting peaks on Igray(x̃) yields N
virtual image plane coordinates x̃k = x̃vk indexed by k=1, 2, . . . , N .

Now, in addition to (xvn, y
v
n) recovered by the diffraction camera, we have

additional measurements x̃vk from this second camera. Note that the correspon-
dences between indices n and k are generally unknown. Let

X ={x̃vk|k=1, 2, . . . , N} (1)

be the set of all recovered coordinates from the camera with the cylindrical lens.
We use X to improve xvn using the following reasoning. If point xvn is relatively
accurate, there should exist a point in X which is sufficiently close to xvn. Then,
this nearest neighbor in X is likely to belong to point n and can thus replace
xvn, since generally x̃v have less position uncertainty. Alternatively, if no point
in X is sufficiently close to xvn, then there is a high probability that xvn is an
inaccurate measurement and can thus be discarded.

Formally, for each point xvn, we solve this correspondence problem by com-
puting

kmin = argmin
k∈[1,N ]

|xvn − x̃vk|, (2)

Then, we perform the assignment

xvn ← x̃vkmin
if |xvn − x̃vkmin

| ≤ Ecyl (3)

where Ecyl = 6 is a predefined distance threshold. Points that do not meet
this threshold are discarded. Fig. 8 of the main manuscript shows an example
result comparing high-speed light source position recovery with and without
the additional cylindrical lens camera. To mimic a cylindrical lens, we place a
plano-convex cylindrical lens (Thorlabs N-BK7) in front of the helper camera’s
objective lens.

2.2 Double-axis Diffraction

Let x̂vl , x̂
v
l denote the virtual image plane positions recovered by the horizontal

diffraction grating sensor, where l = 1, 2, .., L. Due to horizontal or vertical point
overlap, generally L = N might not hold. We merge points from both sensors if
they fall within a predefined distance E(l, n),

E(l, n) ≡
√

(x̂vl − xvn)2 + (ŷvl − yvn)2. (4)

Duplicate detection are removed from the merged point set using the same
threshold constraints. The full merging steps are described in Algorithm 1.
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input : {x̂vl , x̂vl }L1 , {xvn, xvn}N1 , predefined distance threshold Edouble

output: merged point set M
set M = ∅;
compute E(l, n) ∀n, l;
while min

l,n
[E(l, n)] ≤ Edouble do

lmin, nmin = argmin
l,n

[E(l, n)];

xvnmin
← x̂vlmin

;

ŷvlmin
← yvnmin

;

E(l, n)←∞;

end

M← {x̂vl , x̂vl }L1
⋃
{xvn, xvn}N1 ;

remove duplicate points from M;

Algorithm 1: Double-axis diffraction merging procedure.

3 Computing the FOV for Multiple ROIs

As detailed in the main manuscript, our system recovers 2D positions by measur-
ing the intersection of the rainbow streaks with a vertical line sensor (as shown
in Fig. 3 of the main manuscript). The field-of-view (FOV) of our system is de-
termined by the angular range, with respect to the diffraction camera, for which
such an intersections exist. Here we provide a straightforward analysis for the
dependence of the FOV on the configured ROIs.

The system’s FOV is computed using Eq. (3) of the main manuscript. As
shown in Fig. 2(Right), in our prototype θ′ ≈ 45◦, λ ∈ [400nm, 800nm], and
d = 833.3nm, which yields a range of possible incident angles:

θi ∈ [−14.6◦, 13.1◦]. (5)

Therefore, the FOV for a single-diffraction-single-ROI system is about 28◦. For
reference, the FOV of our helper camera, mounted with the 8mm lens, is approx-
imately 48◦ (see Fig. 2[Left]). In our prototype, two (or more) ROIs expand the
FOV up to 52◦, which is wider than the corresponding FOV of our 2D helper
camera (see Fig. 2[Right]).

4 Additional Experimental Details

Tracker In Fig. 5 of the main paper, we applied a simple tracker to the recovered
points yielding motion trajectories. Our tracker uses a combination of a Kalman
filter [1] for smoothing and the Hungarian algorithm [3] for keeping track of
points between the frames. The current framework works well with such a simple
tracking framework due to the high frame-rate of our system.
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Fig. 2. FOV calculation for multiple ROIs. Both diffraction and helper cameras are
equipped with sensors of optical size 7.1mm× 5.3mm. Left: The helper camera is
equipped with a 8mm lens and thus has a FOV of approximately 48◦. Right: Our
prototype uses multiple ROIs of the 2D sensor. The sensor is rotated by 90◦ since
acquisition speed depends on the number of sensor rows being read out. The camera
is positioned at θ′ = 45◦ with respect to the diffraction grating. Using a single ROI
configured at the center of the sensor (marked here as ROI 2) allows detecting light
incident in angles θi ∈ [−14.6◦, 13.1◦]. Thus, the FOV for a single central ROI is about
28◦. Defining two additional ROIs at the edges of the sensor (marked here as ROIs 1
and 3) extends the system’s FOV to 52.3◦. Intuitively, ROIs 1 and 3 ’catch’ the signal
from rainbow streaks whose position on the 2D camera image plane does not intersect
ROI 2.

Calibrating The Horizontal Cylindrical Lens System For the ‘cylindrical
lens’ system variation, the virtual image plane’s xv axis is set to the cylindrical
camera’s 1D horizontal image plane x̃ ≡ xv, while the vertical coordinate is set by
the diffraction camera yv ≡ y. As described in Section 3 of the main manuscript,
calibration proceeds with gathering data pairs {xv,GT

1 } ↔ {I[Ω(y1)], y1} and
training the network to approximate H−1. Note that since yv ≡ y, function G
in Eq. (4) is now the identity function.

Geometric calibration for ‘cylindrical lens’ system is done by imaging an LED
checkerboard instead of a standard black-and-white checkerboard usually used
for 2D camera calibration (see Fig 3) [2]. Similarly to the standard black-and-
white checkerboard, the LED checkerboard consists of LEDs arranged at known
positions on a plane in 3D space. Geometric calibration consists of imaging the
checkerboard’s LEDs, thus retrieving their corresponding 2D projections on the
virtual image plane. To avoid point position ambiguity (vertical overlap) the
checkerboard LEDs are imaged column by column as shown in Fig. 3.

Comparison to Heuristic Classification Fig. 4(Top) here shows a perfor-
mance comparison between our trained network and a heuristic method for re-
covering horizontal position using a color patch. We found the network to out-
perform the heuristic approaches.
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Fig. 3. LED ‘checkerboard’.

Network Training Both our networks (sparse points H−1point and structured

light line scanning H−1line) were trained using the ADAM optimizer for 500 epochs
and a batch size of 512. When multiple ROIs are used, each ROI (patch or RGB
vector) is randomly scaled by a constant. This helps keeping H−1point invariant

to point source spectrum and H−1line invariant to object albedo. Training takes
between 5 minuets and an hour, depending on the network being trained and
the size of the dataset.

3D Reconstruction Details Here we provide additional details about the 3D
reconstruction method used in the experiment of Fig. 6 of the main manuscript.
Prior to scanning, we perform intrinsic and extrinsic virtual-camera-projector
calibration using a standard checkerboard [2]. Now, to extract 3D scene informa-
tion, we seek the correspondence between the virtual camera pixels pv = (xv, yv)
and projector pixels, denoted by pp≡(xp, yp). The correspondence is represented
by two A×W matrices Xp and Yp, where A and W are the height and width of
the virtual image. The value at Xp[yv0 , x

v
0] holds the xp coordinate that corre-

sponds to (xv0, y
v
0 ). Similarly, Yp[yv0 , x

v
0] holds the yp coordinate that corresponds

to (xv0, y
v
0 ). 3D reconstruction using Xp and Yp follows from triangulation [2].

During the scan, the projector illuminates the object using 440 of its columns,
staring at column xp =100 and ending at xp =540. Scanning across all projector
columns yields a large set of data points S ≡ {xvj , yvj , x

p
j }Jj=1, where J is the

number of total valid measurement. Note that H−1point yield continuous coordi-
nates (xvj , y

v
j ). The set S is then used to linearly interpolate the entries of Xp

(over its regular grid) yielding the correspondence seen in Fig. 6 of the main pa-
per. The resulting correspondence map is then filtered using Bilateral filtering.
Matrix Yp is then computed from Xp using epipolar geometry [2].

Light Intensity vs. Accuracy Analysis Our system’s performance depends
on the available imaging signal-to-noise ratio (SNR). The SNR depends on the
signal intensity that is measured by the camera. We numerically evaluated our
neural network’s performance (positioning accuracy) with respect to the signal
intensity.
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Fig. 4. System numerical evaluation results. Top: Histogram showing the absolute
classification error in pixels for our proposed network (blue), and a heuristic classifica-
tion based on color features in LAB color space. Both histograms were created using
a dataset with 48K samples. The numbers below each method state the mean and
standard deviation. Bottom: MAE vs. measured light intensity plot. The intensity is
shown in percent of the maximum 16bit graylevel. The plot shows that for intensities
as low as 3.3% of the maximum, the CNN performance is high–below 1.75 pixels MAE.

To achieve this we captured a large data-set consisting of approximately 70K
diffraction-camera patch samples along with the corresponding ground truth
helper-camera 2D positions. We then fed all dataset patches to our CNN. For all
the recovered 2D points, we computed the mean-absolute-error (MAE) and stan-
dard deviation with respect to the ground-truth points. Using the same dataset,
we repeated the procedure above while successively reducing the intensity for all
dataset patches. The intensity was reduced while accounting for (adding) Pois-
son and read-noises to the patches. The added noise parameters were calibrated
for our specific prototype camera.

Fig. 4(Bottom) shows the resulting MAE vs. measured light intensity plot.
The plot shows an error below 1.75 pixels for intensities above 3.3%. At 0.5%
the error is 3.2 pixels and increases as the signal decreases. Overall, the neural
networks proves to be very robust to low signals.

Light-source Surface Area vs. Accuracy Analysis The analytical model
described in Section 3 of the main manuscript assumes point light sources. Real-
world sources however, have a small finite surface area on the projected image
plane. This surface area depends on the source (bulb) geometry, the distance to
the source, and the source’s orientation with respect to the imaging system.
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Our network was trained with real sources having such typical surface areas.
Moreover, during calibration, we varied the source orientations and position with
respect to the camera, yielding samples with a plurality of intensities and visible
surface areas. Thus, our dataset had various intensities and surface areas and
should be robust in this respect.

Furthermore, we numerically evaluated the robustness of our network for
sources having a surface area that is larger than what is nominally found in
our dataset. We used the 70K-point dataset described in the previous section
to simulate sources with larger horizontal spreads.1 For example, to simulate
a point positioned at (xv, yv) = (300, 500) having a dominant intensity which
occupies three helper-camera pixels, we feed the CNN with a patch created by
averaging three patches belonging to dataset points

(xv,GT, yv,GT) ∈ {(299, 500), (300, 500), (301, 500)}. (6)

We analyzed our system for sources that dominantly occupy up to 7 helper-
camera pixels and saw no noticeable performance drop.2
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1 Our system is unaffected by vertical spread since it does not affect the measured
color.
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