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1. Camera Calibration

For a well-aligned optical system, the relation between
the image-plane shifts (dx, dy) and the surface tilts (θx, θy)
is described in Eq. (1) of the main paper. However, there
might be misalignment between the object plane axis and
camera frame axis. And this misalignment is hard to
avoid when we are using anisotropic material with unknown
anisotropy axis. (see Fig. 2). Therefore, we compensate for
this misalignment by adding an appropriate rotation matrix
to the measured shifts in Eq. (1)

(θx, θy) = (hx, hy)⊙R(αz)(dx, dy), (17)

where

R(αz) ≡
[
cosαz − sinαz

sinαz cosαz

]
, (18)

and αz denotes the misalignment angle shown in Fig. 2.
Note that because our prototype views the speckle through a
cylindrical lens, the conversion factor (hx, hy) for isotropic
materials is not equal with hy > hx [3].

As described by Sheinin et al., the conversion factors
(hx, hy) can be manually calibrated by measuring known
tilts using a goniometer [3]. 1 We found this approach to be
time-consuming and thus, for most experiments, we devel-
oped a more efficient approach described in the next section.

Calibrating the tilts ratio using an isotropic material.
Let us rewrite Eq. (17) in terms of the optical scaling ra-
tio s

(θx, θy) = hx(1, s)⊙R(αz)(dx, dy), (19)

where

s ≡ hy/hx. (20)

1For example, in the whiteboard experiment, calibration using a go-
niometer yielded hx to 514 pixels/degree and hy to 2809 pixels/degree.

Figure 1. Materials used in our experiments.

Using Eq. (19) we can rewrite Eqs. (16) of the main paper
as

ĥ∗(xn, t)≈
θn(t)⊙ (1,m2)

∥θn(t)⊙ (1,m2)∥

=
hx(1, sm

2)⊙R(αz)(dn,x(t), dn,y(t))

∥hx(1, sm2)⊙R(αz)(dn,x(t), dn,y(t))∥

=
(1, sm2)⊙R(αz)(dn,x(t), dn,y(t))

∥(1, sm2)⊙R(αz)(dn,x(t), dn,y(t))∥
.

(21)

Eq. (21) shows that to compute ĥ∗ (and similarly ĝ∗ by set-
ting m = 1), we only need to calibrate the relative scaling
s and the rotation αz .

We estimate s and αz by measuring the vibrations pro-
duced by knocking at known locations xs on an isotropic
surface (m = 1). Because isotropic materials have circular
wavefronts, the expected tilt ratios at each measured point
xn are known and can be used to recover s. For example,
if αz = 0, a point xn located at an angle of 45◦ from xs

should experience the same tilt in both axes θy/θx=1, thus
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(a) speckle photography (b) camera misalignment

(c) rotated shifts (d) corrected shifts

Figure 2. Speckle shifts in sensor plane depends linearly on the
surface tilts. In camera calibration, an misalignment due to camera
angles results in rotated shifts in the sensor plane, as described in
Eq. 17.

from Eq. (17), s = dx/dy .
Let rn denote the image-domain shifts ratio at point xn:

rn ≡ dn,y/dn,x (22)

Then, for each measurement point xn, we compute the
image-domain ratio median during the stable time interval:

rmed
n = median ({rn(t), t ∈ T c(xn)}) . (23)

As mentioned, in isotropic surfaces, the gradient direction is
known and should coincide with the source direction during
the stable time interval

arctan
(
rmed
n

)
= arctan

(
ys − yn
xs − xn

/s

)
− αz. (24)

We then solve a least squares optimization problem using
the uncalibrated gradients from each measurement point to
estimate the relative scaling: s∗, and camera roll angle α∗

z:

s∗,α∗
z=argmin

k,α

∑
n

[
arctan(rmed

n )−arctan(
ys−yn
xs−xn

/s)+α

]2

.

(25)
To get a robust calibration, we typically repeated three
knocks at five known positions xs. In most experiments,
the calibrated αz was less than 5 degree and s was between
3 and 6.

2. Localization algorithm
Algorithm 1 provides pseudocode for the localization al-

gorithm described in Section 4 of the main paper. There
are two hyper-parameters for finding the stable time inter-
val T c(xn): ∆t and τ . Parameter ∆t is the length of the

stable time interval, while τ adjust the threshold for detect-
ing the arrival time of the first wavefront.

There are two additional hyper-parameters for the back-
projection step: β which controls the angular size of the 2D
cone for backprojection and σ which controls the strength
of the distance-dependent weighting. We typically set ∆t=
1.5ms, τ=10, β=6◦, σ=5.

We experimented with filtered backprojection, namely,
applying a filtering function f(·) in line 16 in Algorithm 1.
Specifically, we set f (C(x, t′)) ← exp (C(x, t′)). We
found that this filtering had negligible effect in most experi-
ments and was only beneficial for signals having high SNR.
Filtered backprojection was only used in the ping-pong ex-
periment. If only the relative scaling term s and misalign-
ment angle αz are calibrated, line 11,12 can be replaced
with Eq.(21) to compute the normalized source direction.

In line 2, we compute σ2
n using the signal at static frames

(i.e. with no vibrations). Additionally, we use different hy-
perparameters β, σ for signals with different SNRs. For
measurements with high SNR, we select smaller β and
larger σ values, which produces a sharper voting map. For
low-SNR signals, we use a larger β and smaller σ to regu-
larize the reconstructions.

For certain materials, we observed multiple stable time
intervals. For example, two stable time intervals occurred
in birch, plywood, and porcelain. The first stable interval
starts directly after the first wave arrives and lasts for a very
short duration. Then, a second interval begins ∼0.5ms later
and lasts for a longer time period. We found that the second,
longer, stable time interval provides better localization ac-
curacy and hence used it for to yield the localization results
in these materials.

3. Impact source localization experiments

In this section we provide additional details about the
source localization experiments.

3.1. Localization results on additional materials

In Fig. 8 of the main paper, we showed localization
results on two materials: an isotropic whiteboard and an
anisotropic plywood board. Here, we provide more local-
ization results on eight other boards: medium-density fiber-
board, particle board, glass, gypsum panel, two types of ply-
wood, porcelain and PVC panel. We show the recovery in
Fig. 3. The boards on the first row are made of isotropic
materials. From right to left, the average localization error
is 1.88 cm, 1.15 cm, 1.61 cm, and 1.86cm, respectively. The
second row shows results for all anisotropic materials, with
average errors of 1.57 cm, 1.39 cm, 2.97 cm, and 2.09 cm,
from left to right.



Figure 3. Extra localization results on eight boards. For each board, we knocked at three to four places. In each place, we repeated 3-4
times. The top row shows results for isotropic materials. From right to left, the average localization error is 1.88 cm, 1.15 cm, 1.61 cm,
and 1.86 cm, respectively. The bottom row shows results for anisotropic materials, with average errors as 1.57 cm, 1.39 cm, 2.97 cm, and
2.09 cm, from left to right.

3.2. Synthesizing non-collinear measurements con-
figurations

In Figs. 10 and 13 of the main paper, we showed syn-
thesized measurement point configuration that our current
camera prototype does not support. Here, detail on how we
made these measurements. Our current prototype can only
project a set of collinear laser points. To simulate simultane-
ous measurements using the configurations Figs. 10 and 13,
we repeating the impact two times while moving the cam-
era. Specifically, we set up the imaging system to image
the first set of five points, created an impact (knock on the
board or step on the floor), and recorded the signals. Then,
we moved our imaging system to capture the second points
set, re-calibrated the camera, and captured the signals while
repeating the impact at the same location.

3.3. Additional performance analysis

Localization error vs. point distance Triangulation lo-
calization error increases quadratically with target distance
[1]. Our backprojection algorithm, which performs trian-
gulation via backprojection, suffers from the same limita-
tion. We test this empirically by recovering a set of points
located 20cm, 30cm, 50cm, 70cm, and 100cm away from
our (central) marker. We repeated 18, 18, 25, 10, and 10
measurements at each distance, respectively. We show the
relation between average recovery error and target distance
in Fig. 4(a). The orange dotted line denotes a quadratic fit.

Localization error vs. point angles With a collinear
measurement setup, triangulation localization error in-

(a) error vs. distance (b) error vs. angle

(c) low-collinear source (d) high-collinear source

Figure 4. Analysis on localization error. (a) Error vs. distance.
The red points denote the average error of multiple recoveries at
the same distance. The vertical blue bars denote the standard devi-
ation of the repeated measurements per distance. The orange dot-
ted curve is a fitted quadratic function. (b) Error vs. angle between
the source point and the line defined by the measurement points.
(c)-(d) Backprojection voting maps for low-collinear and higher-
collinear sources, respectively. The localization accuracy degrades
as the source-point angle becomes collinear with the measurement
points’ line.

creases dramatically when target points lie near collinear
angles. We mentioned this limitation in Fig. 8 of the main
paper, and here we show a more detailed study. We plot the
relation between localization error and the angle between
the source point and the line defined by the measurement



Algorithm 1: Source localization with backprojec-
tion.

Input: Measured tilts {θn(t)};
Measurement point locations {xn}N ;
Material calibration term m;
Hyperparameters: β, σ, τ , ∆t;
Filtering function f(·)

Output: Voting map C(x), and prediction of
impact location x∗

/* step-1, compute stable time intervals */

1 for n = 1→ N do
/* compute variance over time */

2 σ2
n ← Var ({∥θn(t)∥2}t)

/* get arrival time of vibration wave */

3 tstartn ← mint{t, ∥θn(t)∥2 > τ · σn}
/* ∆t as hyperparameter */

4 T (xn)← [tstartn , tstartn +∆t]

5 end
/* step-2, run backprojection */

6 C(x)← 0 // initialization

7 for t′ = 0→ ∆t do
8 C(x, t′)← 0 // initialization

9 for n = 1→ N do
10 t← tstartn + t′

/* compute source direction */

11 ĥ← θn(t)⊙ (1,m2)

12 ĥ← ĥ

∥ĥ∥
2

/* cast a weighted cone, Eq.(9) */

13 Cn(x, t
′)← ConeBP(xn, ĥ, β, σ)

/* sum up over all measured points */

14 C(x, t′)← C(x, t′) + Cn(x, t)

15 end
/* accumulate over time */

16 C(x)← C(x) + f (C(x, t′))

17 end
18 x∗ = argmaxx C(x)

points in Fig. 4(b). We show the backprojection heatmap of
two examples with different uncertainty levels.

Recovering temporally adjacent impacts The localiza-
tion method described in Sections 3-5 of the main paper
assumes a single impact source. However, we attempted
to test impact recovery for multiple simultaneous impacts.
Despite our attempts, we found it very difficult to manually
simultaneously knock at two surface locations at once.

Fig. 5(a) shows the measured signals from one such at-
tempt to knock on a whiteboard at two different (known)
points simultaneously. While the knocks appeared simul-
taneous to the knocking individual, an examination of the
measured signals revealed a 40-50 ms time difference be-

(a) measured vibrations (both impacts)

(b) first impact recovery (c) second impact recovery

Figure 5. Recovering two temporally adjacent impacts. In this ex-
periment we attempt to manually create two simultaneous knocks
at two known surface points. (a) shows measured tilts for two
knocks within 50 ms. High-frequency information in the measured
tilts decays rapidly after waves from each knock arrives. Thus,
high-pass filtering can remove most of the energy left from the vi-
bration fields of the first knock when the second knock happens.
Bottom row shows recovery for the first and second knock.

tween the two knocks. Fig. 5(b)-(c) show that this short im-
perceptible time interval between the two impacts is enough
to “unmix” the vibration signals between the two knocks
and accurately recover both locations.

Specifically, the transient vibrations of the first impact
last about 5 ms during which we localize the first impact
before the second impact start. Then, when the vibra-
tions from the second impact affect affect the measured
points, the high-frequency vibrations from the first impact
had mostly subsided, allowing its recovery.

4. Measuring material anisotropy

We can measure material anisotropy by fitting its level-
set shape with an ellipse with anisotropy factor m, as de-
scribed in Eq. (14) in the main paper. To derive m, we need
to calibrate the optical scaling term s first, since these two
scaling terms are coupled as shown in Eq. 21. After cali-
brating the optical scaling term s, using either a goniome-
ter or an isotropic material, we can use a similar procedure
shown in Eq. 25 to compute the material anisotropy and
misalignment angle jointly.

We showed results for three materials in the main pa-
per, in Fig. (11). We provide the calibrated results for an-
other five materials in Fig. 6. The top row shows results for
three isotropic materials, while the bottom row shows three
anisotropic materials.



Figure 6. Transient vibration analysis for different materials. Top plots row: Results for isotropic materials. The surface gradient
direction θy/θx were measured by knocking at known surface positions. Bottom plots row: Results for anisotropic materials. The ellipse
corresponds to the approximated level-set shapes.

5. Futher analysis of impact force experiment
Fig.12(a) of the main paper shows that the peak tilts mag-

nitude ∥θ(t)∥peak2 has a square root relation to the ping-
pong ball’s dropping height

∥θ(t)∥peak2 ∝
√
h, (26)

where h is the dropping height. Neglecting air resistance,
conservation of energy dictates that

mgh = 1/2mV 2, (27)

where m is the ball’s mass and g is gravitational accelera-
tion. Therefore, the relation between V and h is also

V ∝
√
h. (28)

The peak impacting force is linearly proportional to the im-
pact velocity of a ping-pong ball [2]. Thus, Eqs. 29 show
that the peak magnitude of the measured tilts is linear to the
ball’s peak impacting force

∥θ(t)∥peak2 ∝ fpeak, (29)

suggesting that the transient vibrations can be used to ex-
tract the impacting object’s force.
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