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Abstract

To image in high resolution large and occlusion-prone
scenes, a camera must move above and around. Degra-
dation of visibility due to geometric occlusions and dis-
tances is exacerbated by scattering, when the scene is in a
participating medium. Moreover, underwater and in other
media, artificial lighting is needed. Overall, data quality
depends on the observed surface, medium and the time-
varying poses of the camera and light source (C&L). This
work proposes to optimize C&L poses as they move, so that
the surface is scanned efficiently and the descattered recov-
ery has the highest quality. The work generalizes the next
best view concept of robot vision to scattering media and
cooperative movable lighting. It also extends descattering
to platforms that move optimally. The optimization crite-
rion is information gain, taken from information theory. We
exploit the existence of a prior rough 3D model, since un-
derwater such a model is routinely obtained using sonar.
We demonstrate this principle in a scaled-down setup.

1. Introduction
Scattering media degrade images. Visibility enhance-

ment often seeks single-image dehazing [13, 18] or relies
on modulation of illumination properties, such as spatio-
temporal structure [3, 8, 14, 19, 27, 34] and polariza-
tion [45, 47]. None of these methods exploit an important
degree of freedom: the dynamic pose of the camera.

Pose dynamics is important, because most imaging plat-
forms move anyway. Platform motion, however, needs to be
efficient, covering the surface domain in the highest quality,
in the shortest time. The camera needs to move, so that ob-
ject regions that have not been well observed, will be effi-
ciently recovered next. This is the next best view (NBV)
concept, which has been extensively studied in the com-
puter vision and robotics communities. There, viewpoint
selection was driven by occlusions [30], geometric uncer-
tainty in three dimensional (3D) scene reconstruction [9, 50]
and active recognition [38]. Prior NBV designs, however,
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Figure 1. In a scattering medium at time t, the camera and light-
source poses are represented by φC(t), φL(t) respectively. The next
best underwater view task optimizes the poses φC(t+1), φL(t+1)
for object reconstruction.

assumed no participating medium. A scattering medium
may significantly disrupt visibility. This affects drones
overflying wide hazy scenes, autonomous underwater vehi-
cles scanning the sea floor to inspect infrastructure [10, 20]
and fire-fighting rovers operating in smoke. Despite their
motion and need to overcome scatter, existing systems con-
duct imaging paths [4] while ignoring scattering.

This work generalizes NBV to scattering media. We
achieve 3D descattering in large areas and around occlu-
sions, through sequential changes of pose. The obvious
need to move the platform around large areas and occlu-
sions is exploited for optimized dehazing, i.e, estimation of
surface albedo. On the other hand, scattering by the medium
influences the optimal changes of pose.

The challenge is exacerbated when lighting must be
brought-in, in deep underwater operations, tissue and in-
door smoky scenes. Scattering affects object irradiance and
volumetric backscatter [16, 23] as a function of the lighting
pose, not only the camera pose (Fig. 1). Usually both the
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Figure 2. The sensed radiance of surface patch s is affected by
three illumination components: (a) Direct illumination Ds, (b)
Ambient illumination As, (c) Parasitic backscatter Bs.

camera and lighting (C&L) are mounted on the same rig.
However, visibility can potentially be enhanced using sep-
arate platforms [24]. Therefore, the next best underwater
view (NBUV), which is introduced in this work, optimizes
the next joint poses of C&L.

The optimization criterion we use is information gain.
We exploit a rough prior 3D model, since underwater such a
model is routinely obtained using active sonar. We demon-
strate the principle in scaled-down experiments.

2. Theoretical Background
2.1. Imaging in a Medium

Consider Figs. 1,2. At time t, the pose of light source L
has a vector of location and orientation parameters, φL(t). A
source whose intensity is C0 irradiates a submerged surface
patch s from distance lLS. The irradiance [16] model at s is

Ẽs = Ds +As. (1)

The componentDs is due to direct transmission from L to s,
whileAs is ambient indirect surface illumination. The latter
is mainly created by off-axis scattering of the illumination
beam. The medium has extinction coefficient β. In a single
scattering approximation [16, 31, 44],

Ds ∝
C0 exp[−βlLS]

l2LS
, (2)

while As integrates all single scatter paths from L to s over
the illuminated volume. Each path is of the form

Ãs ∝
C0 exp[−β(lLz + lSz)]

(lLzlSz)
2 , (3)

where z is a point in the illuminated volume, and lLz, lSz are
defined in Fig. 2. Monte-Carlo methods can render multiple
scattering and complex shading effects [21, 25, 26].

At time t, the pose of C is represented by a vector of
parameters φC(t). The distance from s to camera C is lSC.
If the surface is Lambertian,1 the signal measured by C is

1Surface reflectivity is described by the bidirectional reflection distribu-
tion function BRDF [2]. The validity of a Lambertian assumption increases
underwater [40, 51].
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Figure 3. Using a small C&L distance either in a non-scattering
[Left] or a scattering medium [Middle]. Backscatter significantly
reduces image quality. [Right]: A large C&L separation reduces
backscatter but exacerbates shadows and signal extinction.

ρsEs, where ρs is the albedo at s and

Es = Ẽs exp(−βlSC). (4)

The line of sight from C to patch s includes backscatter
Bs, which increases [23, 41, 47] with lSo (see Fig. 2c). The
measured radiance [7] is

Is = ρsEs +Bs + nI , (5)

where nI is comprised of [37] photon2 noise and read noise.
The variance of photon noise is σ2

PN = Is. Readout noise is
assumed to be signal-independent, with variance σ2

RN. The
probability density function (PDF) of nI is approximately
Gaussian with variance:

σ2
Is = σ2

PN + σ2
RN = Is + σ2

RN. (6)

The signal-to-noise ratio (SNR) at s is therefore

SNRs ≈
Is√

Is + σ2
RN

≈ ρsEs√
ρsEs +Bs + σ2

RN

. (7)

Backscatter is negligible, Bs � σ2
RN, in a clear

medium. Then from Eq. (7), under sufficient lighting
SNRs ∼

√
ρsEs. For the best SNR, Es is maximized. This

is achieved by avoiding shadows [39], i.e., placing L very
close to C (Fig. 3).

Underwater, placing L very close to C results in signifi-
cant backscatter Bs, which reduces SNRs in (7). To reduce
backscatter, L is usually separated from C. Such a separa-
tion may create shadows. In a shadow, Es � σ2

RN, com-
pounding light extinction by the medium (Eqs. 2-3). Thus
optimal setting of L is non-trivial.

2In this paper, all the radiometric terms (Is, Es, nI , etc..) are in
photoelectron units [e].



2.2. Next Best View

The NBV task is generally formulated as follows. Let O
represent a property of the object, e.g., the spatially varying
albedo or topography. A computer vision system estimates
this representation, Ô, using sequential measurements. By
t, the camera has already accumulated image data I(t′),
∀t′ ≤ t. All preceding data is processed to yield Ô(t). Let
ΦC be the set of all possible camera poses. A next view is
planned for time t + 1, where the camera may be posed at
φC(t+ 1) ∈ ΦC, yielding new data. The new data helps get-
ting an improved estimate Ô(t+ 1). The NBV question is:
out of all possible views in ΦC, what is the best φC(t + 1),
such that Ô(t + 1) has the best quality? Formulating this
task mathematically depends on a quality criterion, prior
knowledge about O, and the type of camera; e.g., passive
or active 3D scanner. Different studies have looked at dif-
ferent aspects of the NBV task [5, 36, 49]. Nevertheless,
they were all designed for imaging in clear media.

2.3. Information Gain

Consider a random variable a. Let f(a) be its PDF. The
differential entropy [1] of a is then

H(a) = −
∫
f(a) ln[f(a)]da. (8)

At time t, the variable a has entropy Ht(a). Then, at time
t+1, new data decreases the uncertainty of a, consequently
the PDF of a is narrowed and its differential entropy de-
creases, Ht+1(a) < Ht(a). The information gain [33] due
to the new data is then

It+1(a) = Ht(a)−Ht+1(a). (9)

Suppose a is normally distributed, with variances σ2
a(t) and

σ2
a(t+ 1) at t and t+ 1, respectively. Then Eqs. (8,9) yield

Ht(a) = (1/2) ln[2πeσ2
a(t)], (10)

It+1(a) = (1/2) ln[σ2
a(t)σ−2a (t+ 1)]. (11)

3. Least Noisy Descattered Reflectivity
Underwater bathymetry (depth mapping) is routinely

done using sonar [4, 6, 11], which penetrates water to great
distances. Hence, in relevant applications, the surface to-
pography is roughly available [4, 22] before optical inspec-
tions. The C&L pose parameters are concatenated into
a vector v(t) = [φC(t), φL(t)]. This vector is approxi-
mately known during operation, using established localiza-
tion methods [11, 12, 29, 32, 35]. Moreover, the water scat-
tering and extinction characteristics are global parameters,
that can be measured in-situ. Consequently, Bs and Es can
be pre-assessed for each φC ∈ ΦC, φL ∈ ΦL and surface
patch index s.

At close distance, optical imaging and descattering seek
the spatial distribution of the surface albedo O =

⋃
s ρs,

to notice sediments, defects in submerged pipes, parasitic
colonies in various environments etc.3 Beyond removal of
bias by backscatter and attenuation, descattered results need
to have low noise variance, so that fine details [46] can be
detectable. This is our goal.

Using Eq. (5), descattering based on an image at t is

ρ̂s(t) = [Is(t)−Bs(t)]/Es(t). (12)

From (12), the noise variance of ρ̂s(t) is

σ2
s(t) = σ2

Is/E
2
s (t) . (13)

Note that σ2
s(t) is unknown, since Eqs. (5,6) depend on the

unknown ρs. Nevertheless, it is possible to define an operat-
ing point value for ρs, by a typical value denoted ρ̄. The rea-
son is that, per application, the typical albedo encountered
is familiar: typical soil in the known region, anti-corrosive
paints in a known familiar bridge support, etc. The value of
ρ̄ is rough, but provides a guideline. Consequently

σ2
Is ≈ σ̄

2
Is ≡ ρ̄Es(t) +Bs(t) + σ2

RN, (14)

σ2
s(t) ≈ ρ̄sEs(t) +Bs(t) + σ2

RN

E2
s (t)

. (15)

Multi-Frame Most-Likely Descattering

As described in Sec. 2.2, by discrete time t, the sys-
tem has already accumulated data {Is(t′)}tt′=0. The mea-
surements have independent noise. Hence, the joint like-
lihood Ls(t) ≡ L[{Is(t′)}tt′=0] of the data is equivalent to
the product of probability densities ∀t′. Consequently, the
log-likelihood is

L̃s(t) = lnLs(t) '
t∑

t′=0

[Is(t
′)−Bs(t′)− ρsEs(t′)]2

σ̄2
Is

(t′)
.

(16)
Differentiating Eq. (16) with respect to ρs, the maximum
likelihood (ML) estimator of the descattered ρs, using all
accumulated data is

ρ̂ML
s (t) =

∑t
t′=0 ρ̂s(t

′)[σs(t
′)]−2∑t

t′=0[σs(t′)]−2
, (17)

where ρ̂s(t′), σs(t′) are derived in Eqs. (12,15). The vari-
ance of this estimator is

[σML
s (t)]2 =

{
t∑

t′=0

[σs(t
′)]−2

}−1
. (18)

Pre-calculate ∀s,v(t) a quality measure of s

qs(t) ≡ 1/σ2
s(t). (19)

3Vision can further enhance the topography estimation [4].



From Eqs. (18,19), the quality of the ML descattered reflec-
tivity ρ̂ML

s (t) is

QML
s (t) ≡ [σML

s (t)]−2 =

[
t−1∑
t′=0

qs(t
′)

]
︸ ︷︷ ︸
QML

s (t−1)

+qs(t) (20)

Eq. (20) shows how new datum updates σML
s (t).

4. Next Best Underwater View
After time t, the next view v(t + 1) yields information

gain I(t+1)(O). Let V be the set of all possible (or per-
missible) camera-lighting poses for time t + 1. The next
underwater view and lighting poses are selected from V , to
maximize the information gain measure It+1(O),

v̂(t+ 1) = arg max
v∈V

It+1(O). (21)

We now derive It+1(O) in our case. Information is an ad-
ditive quantity for independent measurements. Hence, in-
formation gained by enhanced estimation of ρs in Ns inde-
pendent surface patches is

It+1(O) =

Ns∑
s=1

It+1(ρ̂ML
s ). (22)

From Eq. (11),

It+1(ρ̂ML
s ) =

1

2
ln
{

[σML
s (t)]2[σML

s (t+ 1)]−2
}
. (23)

From Eqs. (20,23),

It+1(ρ̂ML
s ) =

1

2
ln

[∑t+1
t′=0 qs(t

′)∑t
t′=0 qs(t

′)

]
= ln

[
1 +

qs(t+ 1)

QML
s (t)

] 1
2

(24)
Suppose prior to t + 1, patch s has not been observed.

Nevertheless, 0 ≤ ρs ≤ 1. For a uniformly distributed ran-
dom sample in this range, the variance is σ2

max = 1/12.
Therefore, if s is unobserved until t+ 1,

It+1(ρ̂ML
s ) =

1

2
ln

[
1 +

qs(t+ 1)

1/σ2
max

]
. (25)

5. Path Planning
Our formalism has focused on optimization of the next

best view, underwater. What about the next best sequence
of views? Indeed the formalism can be extended to path
planning, beyond a single next view. The information gain
from t to t + 1 is given by Eqs. (22,24,25). Similarly, the
information gain of patch s due to a path from t1 to t2 is

It1→t2(ρ̂ML
s ) =

1

2
ln

[∑t2
t′=0 qs(t

′)∑t1
t′=0 qs(t

′)

]
=

1

2
ln

[
QML
s (t2)

QML
s (t1)

]
(26)

Yk

Tk

v(t1)
v(t2)

warp

warp
fuse

σ(xC, t1)

ρ̂(xC, t2)

σ(xC, t2)

Y
ρ̂(xC, t1)

ρ̂(xtexture, t2) σ(xtexture, t2)

ρ̂(xtexture, t1) σ(xtexture, t1)

I(xC, t1)

I(xC, t2)

Figure 4. A surface mesh (green) is imaged from poses v(t1) and
v(t2). Face Tk is a red-marked. Imaged faces are warped and
scaled to match Yk, amplifying σ(xtexture, t) according to |Us(t)|.

Thus

It1→t2(O) =

Ns∑
s=1

1

2
ln

[
QML
s (t2)

QML
s (t1)

]
. (27)

A path of C&L is L ≡ [v(t1),v(t1 + 1) . . .v(t2)]. Then, in
terms of information gain, an optimal path satisfies

Lbest = argmax
L

[It1→t2(O)] . (28)

We implement Eq. (28) by perturbing an initial path L0.

6. Discrete Domain Expressions
In practice, both data and models are often not expressed

in surface patches. Rather, data is given in image pixels,
while a surface model is given by a mesh having a texture
map [4]. This section describes how these representations
affect the expressions.

Let the surface be modeled by a triangulated mesh4 M,
comprising a set of mesh faces {Tk}Nm

k=1. Surface albedo
is represented by a texture map domain Y = {Yk}Nm

k=1.
Face Tk corresponds to a triangle Yk in the map domain
(Fig. 4d). A texture-map pixel xtexture ∈ Y has one-to-one
correspondence with a specific surface patch: s(xtexture).

4Any polygonal representation of a mesh can be used here.
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Figure 5. Simulation. (a) The scanned surface. The camera’s scan-
ning trajectory is along the red arrows. (b) Trajectories of fixed-
baseline and NBUV. Face color represent qk(t = 8). Note how
NBUV avoids casting shadows from the bumps to the floor.

In the image-plane of camera C, a spatial location is de-
noted xC, in pixel units. At time t, the camera has a sim-
ulated projection operator PC

t . Then, patch s projects to a
spatial set xC ∈ Us(t):

xtexture ↔ s↔ Us(t). (29)

The area of Us(t) is |Us(t)|, in pixel units. Using this model,
computer graphics renders components of Eqs. (12,15),
E(xC, t) = PC

t (Es), B(xC, t) = PC
t (Bs).

The corresponding image data is I(xC, t). Thus, Eq. (12)
is expressed as

ρ̂(xC, t) = [I(xC, t)−B(xC, t)]/E(xC, t) (30)

in the camera coordinates. This value is transfered to the
texture map by a warping [15] operator (see Fig. 4)

ρ̂(xtexture, t) = WARP{ρ̂(xC, t)}xC∈Us(t) . (31)

Similarly, Eq. (15) is expressed by

σ2(xC, t) ≈ ρ̄(xC, t)E(xC, t) +B(xC, t) + σ2
RN

E2(xC, t)
(32)

in the camera coordinates. Note that when |Us(t)| > 1,
warping by Eq. (31) implicitly involves spatial averaging.
Thus, warping decreases the variance of the value in the
texture map, in proportion to |Us(t)|. Hence, the result of
Eq. (32) is generally transfered to the texture map by

σ2(xtexture, t) = |Us(t)|−1WARP{σ2(xC, t)}xC∈Us(t) .
(33)

If |Us(t)| < 1 ∀t, then patch s is never observed at
sufficient resolution. Per patch, the image sequence should

strive to provide raw measurements I(xC, t) at sufficient
resolution, in which |Us(t)| ≥ 1. Over a flat terrain, this
requirement is easily met by keeping C under a specific al-
titude. In a complex terrain, the trajectory altitude and pro-
jected patch resolution vary. To keep our optimization un-
constrained, we took the following step. When |Us(t)| < 1,
the patch’s variance is penalized as

σ2(xtexture, t) = exp(η{|Us(t)|−1 − 1})
WARP{σ2(xC, t)}xC∈Us(t)

(34)
where η is a constant parameter, which we set to 10. We
found that this penalty keeps C from distancing from the
surface, and provides good results.

Exploiting Eq. (29) to replace s by xtexture, descatter-
ing is done by Eqs. (17,31,33,34). Similarly, Eq. (29) af-
fects the representation of the fields qs(t), QML

s (t) and I in
Eqs. (19,20,24,25).

To save memory, our implementation made a minor ap-
proximation. For a fineM, the illumination and thus noise
variance are rather uniform within each Tk. For each face k
the average noise standard deviation is

σk(t) =
1

|Yk|
∑

xtexture∈Yk

σ(xtexture, t) , (35)

where |Yk| is the number of texture-map pixels in Yk.
Eq. (35) yields a per-face quality measures qk(t) = 1/σ2

k(t)

and QML
k (t) =

∑t
t′=0 qk(t′), in analogy to the terms qs(t)

and QML
s (t). In this approximation, the information gain

(24) for Tk is

It+1(Tk) ≈ |Yk|
2

ln

[
1 +

qk(t+ 1)

QML
k (t)

]
, (36)

The information gain is therefore:

It+1(O) ≈
Nm∑
k=1

It+1(Tk). (37)

7. Simulations
We set σRN = 13.1[e] and a full well of 24,000 [e] in a

perspective camera C, based on Canon 60D specs, while L
is a spotlight with no lateral falloff. Fig. 5 illustrates a sim-
ple case study. The medium’s parameters are β = 5[1/m],
while the Henyey-Greenstein phase anisotropy parameter is
g = 0.6 [16, 17]. The scattering model of [16] renders the
images (5).

Camera positions are manually set in a straight path
40cm above a surface. Eight views {φC(t)}8t=1 are spaced
uniformly along the path. C&L start from v(0). The ini-
tial LC baseline is 2cm. Underwater this baseline results
in significant backscatter. Hence, the baseline increases to



Our method Trivial

Figure 6. Path planning. Red cones - C. Green cones - L. In the
trivial path, both left and right faces are occluded. Additionally,
the box casts a shadow to the left of the plane (Red arrow). The
NBUV path overcomes occlusion and shadowing, improving the
estimation uncertainty by 30%.

12cm. A traditional path separates L from C by a fixed base-
line whose length and orientation are fixed, ~LC = 12x̂. L
points to the center of C’s field of view on the surface. To
the best of our knowledge, prior descattering methods are
oblivious to SNR variability in image sequences. To simu-
late this oblivion, we set σs(t) = 1 ∀t in Eq. (17) during the
analysis of the traditional path.

Keeping the same {φC(t)}8t=1, NBUV optimized
φL(t+ 1),∀t. The state of L was selected out of a set of 32
possible locations at different distances around φC(t+ 1).
Moreover, in each location there are 9 orientations of φL,
facing nadir,±10◦ or±20◦ off nadir, per lateral-coordinate.
Hence, NBUV relies on |V(t)| = 288 options per t. We
used exhaustive search.

Fig. 5b shows the two C&L trajectories. Clearly the illu-
mination should face opposite the bumps, when the camera
passes above them. This is evident in v(1), where NBUV
yields a better lit image than an image of a traditional path.

Fig. 6 illustrates path planning by NBUV. A cube hav-
ing 28cm edges is placed on a flat surface in a scattering
medium (β = 2.5[1/m], g = 0.6). An initial trivial scan-
ning path for C is set 84cm above the surface. The initial
path consists of 6 uniformly distributed views. To avoid
backscatter, the baseline is ~LC = 34x̂ cm. In the initial triv-
ial path, the left and right faces (see Fig. 6 red arrow) are
occluded as C passes over the cube. In addition, a shadow
from the cube heavily degrades the left side of the surface.

Denote the scanning path by L = {v(1),v(2)..v(6)}.
There are 60 degrees of freedom to L.5 Optimization of
L was initialized by the trivial path, followed by 20 itera-
tions of Matlab’s direct search function [28]. The resulting

5Rotation about axis Z is degenerate, thus excluded for both L and C.

path moves C&L to cover the occluded regions (Fig. 6 views
3-4). Note that the front and back faces of the cube (blue ar-
row in Fig. 6) are better resolved. This is thanks to views
2 and 5. NBUV reduced the total estimation uncertainty by
30%, relative to the trivial path.

Scanned Topography

We built a model, described in Sec. 8, having an arbi-
trary non-trivial topography. Emulating a sonar scan, the
surface model was scanned using a Kinect 2 time-of-flight
camera in a clear medium, producing a 3D mesh. We tested
what happens when the scattering medium is ignored. This
is achieved by setting β → 0 in the optimization. The re-
sulting {φL(t)}10t=1 seeks to avoid shadows and maximize
Es over the surface. This mostly leads to a very small | ~LC|
and thus poor visibility (NBV in Fig. 7). NBUV reduces
backscatter and shadowing (NBUV in Fig. 7).

Next, we tested NBUV robustness to deviations from
our model’s assumptions. We simulated recovery of a non-
Lambertian surface ignoring the fact that specularities ex-
ist.6 As seen in Fig. 7, relative to a fixed-baseline path,
NBUV proved superior in practice. We believe that this
is because backscatter and shadows are worse factors than
non-Lambertian reflectance.

The 3D geometry prior can be coarse. This was tested
by feeding the algorithm coarsened versions of the true ter-
rain (Fig. 7). Optimized views were largely insensitive to
the coarsened topography prior. We also induced errors in
the view parameters, v(t) leading to small misalignments
during texture mapping (Sec. 6). Misalignment is resolved
by standard computer vision. For details see [43].

8. Experiments
In Exp1, the setup (Fig. 8) was submerged in water

polluted by some milk, for scattering conditions consistent
with our image formation model [31]. From Fig. 8c, the
surface is somewhat shiny. A machine vision camera was
submerged in a watertight housing. The intrinsic parame-
ters of C and the illumination cone angle were calibrated
underwater, to account for water refraction. A robotic 2D
plotter moved C&L to {v(t)}10t=0.

In Exp2, the setup (Fig. 9) was in fog created by a AT-
MOS FOG AF-1200 machine. The illumination was made
by a LED (Mouser Electronics ‘Warm White’ 3000K). The
extinction and phase-function parameters β,g were esti-
mated in-situ:7

g, β = argmin
g,β
‖E(xC, t) +B(xC, t)− I(xC, t)‖2, (38)

6Measurement were simulated using a Phong-model with parameters
Kα = 0,Kd = 1,Ks = 0.5, α = 20.

7Underwater β = 12[1/m], g = 0.6. In the fog, we manually as-
sessed β ≈ 2.5 and g = 0.6.
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Figure 7. Simulations including coarsened geometry and Phong reflectance. Comparing to ground truth, quality measures are overlaid in
yellow, top to bottom: SSIM [48], PSNR, VIF [42].
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Figure 8. Experimental setup. A camera in a watertight housing
images a LED-illuminated surface, submerged in a water tank (not
shown). (a) Empirical image I(xC, t). (b) Conditioned recovery
of ρ̂(xC, t), using Eqs. (12,39). (c) Specularities.

when C&L were placed in a known state above a flat white
sheet (ρs u 1).

8.1. Numerical Conditioning

Eq. (12) may become unstable as Es → 0, due to shad-
ows or multiple scattering. Therefore, E(xC, t) is stabilized
by

Ê(xC, t) =

=
([
E(xC, t) ∗ hE

]
(1− w) +

[
I(xC, t) ∗ hI

]
w
)
∗ hT .

(39)
Here hE , hI and hT are Gaussian kernels, and w is an alpha
mask. We set w(x) = 1 whenever ρ̂(xC, t) > 1, which is
an indicator of unstable estimation. An example of condi-
tioned estimation is seen in Fig. 8b.

Camera and light

Experiment surface

NBUV

Trivial

Figure 9. Path planning experiment. Red and yellow-marked re-
gions show areas that significantly benefited from NBUV.

8.2. Results

In Exp1, {φC(t)}10t=0 are manually set in uniformly-
spaced locations starting from v(0) shown in Fig. 10a. Due
to mechanical limitations, we allow C&L to move only hor-
izontally, and oriented directly down. The elevation of C&L
is 20cm above the lowest point of the surface.

In the fixed-baseline configuration, ~LC is fixed so as to
avoid overwhelming backscatter. By NBUV, per t, L can be
placed in |V(t)| = 40 states around φC(t) ∀t ∈ [1..10]. The
recovered albedo images are mapped to the 3D mesh of the
surface (Fig. 10b-c). NBUV provides a better overall sur-
face estimation, relative to data obtained by a fixed-baseline
path. In our particular surface, shadows on the right and
center of the surface are filled-in by NBUV. Fig. 10A-C
show areas where the expected estimation noise is signif-
icantly lowered by NBUV. The total I(O) is lower, though
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Figure 10. Experiment results. [I] Scanning path and light locations. [II-III]: Fixed-baseline and NBUV results. [IV]: Close up comparison.
A-C show improved estimation quality while the area in D is better estimated using a fixed baseline.

some surface patches do not benefit from NBUV (Fig. 10D).
Exp2 reproduces the setup and paths described in the

cube simulation (Fig. 6). As in the simulation, the path
planned by NBUV images all sides of the box (Fig. 9).
The actual medium parameters deviate from the ones as-
sumed. This discrepancy causes a bias in ρ̂(xC, t), revealed
in brightness variations in Fig. 6. As in Exp1, not all
patches benefit from NBUV.

9. Discussion
The paper defines NBUV and path planning accounting

for scattering effects. NBUV optimizes viewpoints so the
descattered albedo is least noisy, allowing resolution of fine
details. It generalizes dehazing to scanning multi-view plat-
forms. We believe this approach can make drone imaging
flights and underwater robotic imaging significantly more
efficient when operating in poor visibility. Further work can
use more comprehensive scattering models, image statistics
priors and path-length penalties. Moreover, the principle
we proposed can benefit from optimization algorithms that
are more efficient, as the number of degrees of freedom
increases. The principle can possibly be generalized to
multiple cameras cooperatively scanning the scene.
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Algorithm 1 Next Best Underwater View
1: procedure NBUV(V(t+ 1), Ô(t))
2: for each view v(t+ 1) ∈ V(t+ 1) do
3: Pre-compute E(xC, t+ 1), B(xC, t+ 1).
4: Pre-compute σ2(xC, t+ 1) using Eq. (32).
5: for each s(xtexture) visible from v(t+ 1) do
6: σ2(xtexture, t+ 1)← σ2(xC, t+ 1) using Eqs. (33,34).
7: Compute qs(t+ 1) using Eq. (19).
8: Compute It+1(O) using Eqs. (22,24,25).
9: v̂(t+ 1) = arg max

v∈V
It+1(O).

10: Set NBUV as v(t+ 1) = v̂(t+ 1).
11: Take the step: t← t+ 1
12: I(xC, t)← Take image from v(t)
13: Compute ρ̂(xC, t) using Eq. (30).
14: for each s(xtexture) visible from v(t), do
15: Warp ρ̂(xtexture, t)← ρ̂(xC, t) using Eq. (31)
16: Fuse ρ̂(xtexture, t) to Y using Eq. (17).
17: Update QML

s (t).
return ρ̂ML
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[29] F. Maurelli, S. Krupiński, Y. Petillot, and J. Salvi. A par-
ticle filter approach for AUV localization. In Proc. IEEE
OCEANS, pages 1–7, 2008.

[30] J. Maver and R. Bajcsy. Occlusions as a guide for planning
the next view. IEEE Trans. PAMI, 15(5):417–433, 1993.

[31] S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoor-
thi, S. K. Nayar, and H. W. Jensen. Acquiring scattering
properties of participating media by dilution. ACM TOG,
25(3):1003–1012, 2006.

[32] S. Negahdaripour, and H. Madjidi. Stereovision imaging on
submersible platforms for 3-D mapping of benthic habitats
and sea-floor structures. IEEE J. Oceanic Eng., 28(4):625–
650, 2003.

[33] K. H. Norwich. Information, Sensation, and Perception.
Academic Press, San Diego, 1993.

[34] M. O’Toole, R. Raskar, and K. N. Kutulakos. Primal-dual
coding to probe light transport. ACM TOG, 31(4):39, 2012.

[35] L. Paull, S. Saeedi, M. Seto, and H. Li. AUV navigation and
localization: A review. IEEE J. Oceanic Eng., 39(1):131–
149, 2014.

[36] R. Pito. A solution to the next best view problem for auto-
mated surface acquisition. IEEE Trans. PAMI, 21(10):1016–
1030, 1999.

[37] N. Ratner and Y. Y. Schechner. Illumination multiplexing
within fundamental limits. In Proc. IEEE CVPR, 2007.

[38] S. D. Roy, S. Chaudhury, and S. Banerjee. Active recognition
through next view planning: A survey. Pattern Recognition,
37(3):429–446, 2004.

[39] S. Sakane and T. Sato. Automatic planning of light source
and camera placement for an active photometric stereo sys-
tem. In Proc. IEEE Robotics and Automation, pages 1080–
1087, 1991.

[40] Y. Y. Schechner, D. J. Diner, and J. V. Martonchik. Space-
borne underwater imaging. Proc. IEEE ICCP, 2011.

[41] A. Sedlazeck and R. Koch. Simulating deep sea underwater
images using physical models for light attenuation, scatter-
ing, and refraction. In Proc. of VMV Workshop, 2011.



[42] H. R. Sheikh and A. C. Bovik. Image information and visual
quality. IEEE Trans. IP., 15(2):430–444, 2006.

[43] M. Sheinin and Y. Y. Schechner. The next best underwater
view: Supplementary material. In Proc. IEEE CVPR, 2016.

[44] B. Sun, R. Ramamoorthi, S. G. Narasimhan, and S. K. Na-
yar. A practical analytic single scattering model for real time
rendering. ACM Trans. TOG, 24(3):1040–1049, 2005.

[45] T. Treibitz and Y. Y. Schechner. Active polarization descat-
tering. IEEE Trans. PAMI, 31(3):385–399, 2009.

[46] T. Treibitz and Y. Y. Schechner. Recovery limits in pointwise
degradation. Proc. IEEE ICCP, 2009.

[47] T. Treibitz and Y. Y. Schechner. Turbid scene enhancement
using multi-directional illumination fusion. IEEE Tran. IP,
21(11):4662–4667, 2012.

[48] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: From error visibility to structural
similarity. IEEE Trans. IP, 13(4):600–612, 2004.

[49] S. Wenhardt, B. Deutsch, J. Hornegger, H. Niemann, and
J. Denzler. An information theoretic approach for next best
view planning in 3-D reconstruction. In Proc. IEEE ICPR,
1:103–106, 2006.

[50] P. Whaite and F. P. Ferrie. Autonomous exploration: Driven
by uncertainty. IEEE Trans. PAMI, 19(3):193–205, 1997.

[51] H. Zhang and K. J. Voss. Bidirectional reflectance study
on dry, wet, and submerged particulate layers: effects of
pore liquid refractive index and translucent particle concen-
trations. Applied Optics, 45(34):8753–8763, 2006.


